Two-dimensional measurements of the solvent structural relaxation dynamics in dipolar solvationw
نویسندگان
چکیده
Resonant-pump polarizability response spectroscopy (RP-PORS) is based on an optical heterodyne detected transient grating (OHD-TG) method with an additional resonant pump pulse. In RP-PORS, the resonant pump pulse excites the solute–solvent system and the subsequent relaxation of the solute–solvent system is monitored by the OHD-TG spectroscopy. RP-PORS is shown to be an excellent experimental tool to directly measure the solvent responses in solvation. In the present work, we extended our previous RP-PORS (Park et al., Phys. Chem. Chem. Phys., 2011, 13, 214–223) to measure time-dependent transient solvation polarizability (TSP) spectra with Coumarin153 (C153) in acetonitrile. The time-dependent TSP spectra showed how the different solvent intermolecular modes were involved in different stages of the solvation process. Most importantly, the inertial and diffusive components of the solvent intermolecular modes in solvation were found to be spectrally and temporally well-separated. In a dipolar solvation of C153, high-frequency inertial solvent modes were found to be driven instantaneously and decay on a subpicosecond timescale while low-frequency diffusive solvent modes were induced slowly and decayed on a picosecond timescale. Our present result is the first experimental manifestation of frequency-dependent solvent intermolecular response in a dipolar solvation.
منابع مشابه
Two-dimensional measurements of the solvent structural relaxation dynamics in dipolar solvation.
Resonant-pump polarizability response spectroscopy (RP-PORS) is based on an optical heterodyne detected transient grating (OHD-TG) method with an additional resonant pump pulse. In RP-PORS, the resonant pump pulse excites the solute-solvent system and the subsequent relaxation of the solute-solvent system is monitored by the OHD-TG spectroscopy. RP-PORS is shown to be an excellent experimental ...
متن کاملInvestigation of molecular motion of Cl-adamantane in the nanoprous zeolite by 13C NMR dipolar dephasing and variable contact time measurements
Dipolar-dephasing method provides some information about the strength of dipolar coupling in solids. Dipolar dephasing technique measures the time for a polarized carbon nucleus to lose its magnetization once the proton locking field is terminated. The dynamics of guest molecules adsorbed within the cavities and channels of nonporouszeolite strongly depend on the structure and chemical composit...
متن کاملOn the Generalized Continuum Model of Dipolar Solvation Dynamics*
The continuum model of dipolar solvation dynamics is reviewed. The effects of non-spherical molecular shapes, of non-Debye dielectric relaxation of the polar solvent and of dielectric inhomogeneity of the solvent around the solute dipole are investigated. Several new theoretical results are presented. It is found that our generalized continuum model, which takes into account the dielectric inho...
متن کاملSolvent structural relaxation dynamics in dipolar solvation studied by resonant pump polarizability response spectroscopy.
Resonant pump polarizability response spectroscopy (RP-PORS) was used to study the isotropic and anisotropic solvent structural relaxation in solvation. RP-PORS is the optical heterodyne detected transient grating (OHD-TG) spectroscopy with an additional resonant pump pulse. A resonant pump excites the solute-solvent system and the subsequent relaxation of the solute-solvent system is monitored...
متن کاملSolvation dynamics: new insights into chemical reaction and relaxation processes
This paper examines the role of dynamic solvation in several chemical processes. The following three phenomena are discussed in detail: rotational diffusion of dipolar molecules in alcohol solvents, the solvation of photogenerated electrons in water and reaction rate constants of intramolecular charge transfer processes in polar solvents. In each case, information on the role of solvent motion ...
متن کامل